On the tree-width of even-hole-free graphs

Dewi Sintiari

LIP, ENS Lyon
Joint work with Pierre Aboulker, Isolde Adler, Eun Jung Kim, Nicolas Trotignon
November 18, 2020

Motivation

- A sort of dichotomy between "even-hole-free graphs" and "perfect graphs" (G is perfect if for every induced subgraph H of G, $\chi(H)=\omega(H))$

	EHF graphs	Perfect graphs
Structure	"Simpler"	More complex
Polynomial α, χ	$?$	YES

- Better understanding of the structure of even-hole-free graphs

Tree-width

Tree decomposition

AXIOMS

1. Every vertex is in a bag
2. Every edge is in a bag
3. $\forall v \in V(G)$, the support of v forms a subtree

- Tree-width of $G($ or $t w(G))$ measures how close G from being a tree
- Tree decomposition of G : "gluing" the pieces of subgraphs of G in a tree-like fashion (a tree decomposition resembles "fat tree" with nodes represented as "bags" of vertices)
- width of $T=$ the size of the largest bag - 1
- tree-width of G : width of the optimal tree decomposition of G
- $t w(G) \leq k$ if G can be recursively decomposed into subgraphs of size $\leq k+1$

Tree-width

Tree decomposition

AXIOMS

1. Every vertex is in a bag
2. Every edge is in a bag
3. $\forall v \in V(G)$, the support of v forms a subtree

- Tree-width of $G($ or $t w(G))$ measures how close G from being a tree
- Tree decomposition of G : "gluing" the pieces of subgraphs of G in a tree-like fashion (a tree decomposition resembles "fat tree" with nodes represented as "bags" of vertices)
- width of $T=$ the size of the largest bag - 1
- tree-width of G : width of the optimal tree decomposition of G
- $t w(G) \leq k$ if G can be recursively decomposed into subgraphs of size $\leq k+1$

Algorithmic use of tree-width

Many graph optimization problems that are NP-hard become tractable on bounded tree-width graphs

Theorem (Courcelle, 1990)
Every graph property definable in the monadic second-order logic (MSO) formulas can be decided in linear time on class of graphs of bounded tree-width.

Some graph problems expressible in MSO:

- maximum independent set, maximum clique, coloring

Even-hole-free graphs (or ehf graphs)

- H is an induced subgraph of G if H can be obtained from G by deleting vertices
- G is H-free if no induced subgraph of G is isomorphic to H
- When \mathcal{H} is a family of graphs, \mathcal{H}-free means H-free, $\forall H \in \mathcal{H}$
- Even hole: induced cycle of even length (i.e. no chord in the cycle)
- G is even-hole-free means G does not contain an even hole
- Some examples: chordal graphs, complete graphs

Figure: Theta and prism

Remark. (Theta, prism)-free is a superclass of even-hole-free

Tree-width of even-hole-free graphs

Observation: since complete graph is ehf, the tree-width of the class is unbounded

- When planar $\rightarrow t w \leq 49$ [silva, da Siva, Sales, 2010]
- Pan-free $\rightarrow t w \leq 1.5 \omega(G)-1$ [Cameron, Chaplick, Hoàng, 2015]
- K_{3}-free $\rightarrow t w \leq 5[$ Cameron, da Silva, Huang, Vušković, 2018] \star
- Cap-free $\rightarrow t w \leq 6 \omega(G)-1$ [same authors as \star]

Figure: Triangle, pan, and cap

Tree-width of even-hole-free graphs

Some even-hole-free graphs of unbounded width:

- Diamond-free [Adler, Le, Müller, Radovanović, Trotignon, Vušković, 2017]
- It has unbounded rank-width (implies unbounded tree-width)
- K_{4}-free [s., Trotignon, 2019]
- It has unbounded tree-width (and unbounded rank-width)

Figure: Diamond and K_{4}

Ehf graphs of unbounded tree-width

Figure: A diamond-free ehf graph of large rank-width; it contains large clique

Question: What if the clique size is bounded?

Ehf graphs of unbounded tree-width

Bounded clique size does not imply bounded tree-width

- The following: A family of K_{4}-free graphs with arbitrarily large tw

- The graphs have large degree and contains large clique minor clique minor: pairwise adjacent connected subgraphs

Question: Are these two conditions necessary?

Main questions

Even-hole-free graphs with no K_{4} have unbounded tree-width

- Our construction which certifies this contains large clique minor
- It also contains vertices of high degree

Are these two conditions necessary? YES!

- Even-hole-free graphs with no clique minor have bounded tree-width [Aboulker, Adler, Kim, S., Trotignon, 2020]
- Even-hole-free graphs of bounded degree have bounded tree-width [Abrishami, Chudnovsky, Vušković, 2020]

1st contribution: even-hole-free graphs with no H -minor

Theorem (Aboulker, Adler, Kim, S., Trotignon, 2020)
Even-hole-free graphs with no H-minor for some graph H have bounded tree-width. (This is actually proven for (theta, prism)-free graphs.)

- This provides another proof that planar ehf graphs have bounded tree-width.
- For the proof, we develop an "induced wall theorem" for graphs excluding fixed minor.
- From this, we derive that ehf graphs excluding fixed minor have bounded tree-width.

Even-hole-free graphs with no H -minor

Theorem (Induced wall theorem for graphs excluding H-minor) If G is H-minor-free with $t w(G) \geq f_{H}(k)$, then G contains a $(k \times k)$-wall or the line graph of a chordless $k \times k$-wall as an induced subgraph.

Figure: A (3×3)-wall and the line graph of chordless (3×3)-wall

Even-hole-free graphs with no H -minor

Theorem (Fomin, Golovach, Thilikos, 2011)
For every H, there exists a constant $c_{H}>0$ and an integer k s.t. for every connected H-minor free graph G with $t w(G) \geq c_{H} \cdot k^{2}, G$ contains either Γ_{k} or Π_{k} as a contraction.

Figure: Γ_{6} and Π_{6}

2nd contribution: even-hole-free graphs of bounded degree

Conjecture (Aboulker, Adler, Kim, S., Trotignon, 2020)
Even-hole-free graphs with bounded degree have bounded tree-width.
We prove the following cases:

- Subcubic ehf graphs have tree-width at most 3
- Approach: a full structure theorem for subcubic (theta, prism)-free graphs (every graph is either simple or it has a "nice" separator which yields boundedness on the tree-width).
- Pyramid-free ehf graphs of degree ≤ 4
- Approach: a combination of structural properties to show K_{6}-minor-freeness.
- $t w(G) \leq f_{K_{6}}(3)$, with f as in the induced grid theorem.

Figure: Pyramid

Structure theorem of subcubic even-hole-free graphs

Theorem (Aboulker, Adler, Kim, S., Trotignon, 2020)
Let G be a (theta, prism)-free subcubic graph. Then either:

- G is a basic graph; or
- G has a clique separator of size at most 2; or
- G has a proper separator.

Figure: Basic graphs and proper separator

Tree-width of even-hole-free graphs (a proof)

Theorem (Aboulker, Adler, Kim, S., Trotignon, 2020)
Subcubic even-hole-free graphs have tree-width ≤ 3.
Sketch of proof.

- Every basic graph has tree-width at most 3 .
- "Gluing" along a clique and proper gluing preserve tree-width to be ≤ 3.

Tree-width of ehf graphs (+pyramid-free) of max degree 4

(skipped for now...)
Theorem (Aboulker, Adler, E. Kim, S., Trotignon, 2020)
Every (even hole, pyramid)-free graph of maximum degree 4 has tree-width $<f_{K_{6}}(3)$.

Sketch of proof.

- f is the bound given in the 'induced grid theorem'
- The core of the proof: If G is (even hole, pyramid)-free graph of maximum degree at most 4 , then G contains no K_{6}-minor.
- The K_{6}-minor freeness follows from the structure theorem for graphs in the class: for every graph in the class, it is either basic or it has a clique separator.

Even-hole-free graphs of bounded degree

The "bounded degree \Rightarrow bounded tree-width" conjecture has been proven! (using another technique: balanced separator)

Theorem (Abrishami, Chudnovsky, Vušković, 2020)
Ehf graphs of bounded degree have bounded tree-width. (This is actually proven for a superclass of ehf graphs.)

Open problems

Motivation: grid-minor theorem of Robertson and Seymour There is a function f such that if $t w(G)>f(k)$, then G contains (as an induced subgraph) one of the following:

- a subdivision of a $(k \times k)$-wall
- line graph of a subdivision of a $(k \times k)$-wall
- a vertex of degree at least k

References

P. Aboulker, I. Adler, E. J. Kim, N. L. D. Sintiari, and N. Trotignon.

On the tree-width of even-hole-free graphs.
CoRR, abs/2008.05504, 2020.
T. Abrishami, M. Chudnovsky, and K. Vušković.

Even-hole-free graphs with bounded degree have bounded treewidth.
CoRR, abs/2009.01297, 2020.
國 N. L. D. Sintiari and N. Trotignon.
(Theta, triangle)-free and (even hole, K_{4})-free graphs. Part 1 : Layered wheels. CoRR, abs/1906.10998, 2019.

0
K. Vušković.

Even-hole-free graphs: a survey.
Applicable Analysis and Discrete Mathematics, 2010.

The End

